R —

Graph-Matching-Based Simulation-Region
Selection for Multiple Binaries

Charles Yount and Harish Patil, Intel Corporation
Mohammad S. Islam, Univ. of Texas, San Antonio
Aditya Srikanth, Univ. of Texas, Austin

ISPASS-2015

2015 IEEE International Symposium on Performance Analysis of Systems and Software
March 29-31, 2015

Hilton At Penn's Landing, Philadelphia, PA

Motivation and problem statement

Evaluate pre-Si performance differences between n binaries compiled from the same source
Application examples

= Compare compilers and/or compiler optimizations

= Compare impact of different macro architectures and/or instruction set extensions
Requirements

» Find a set of representative simulation regions from each binary such that
» Resulting speedup estimates are accurate
= All regions are feasible for simulation
» Regions are matched across binaries, representing the same semantic work in each

» Tolerate significant differences between binaries due to different optimizations, instruction sets, etc.

= Do not require debug symbols or modification of source code

M

Independent-SimPoint approach

= Divide each binary execution into intervals of equal lengths
» Find phases and representative regions using k-means clustering independently for each binary

region, region, region, region, regiong
region, region, regiong region,

» Pro: all simulation regions are near desired length
= Con: regions differ both in number and semantic representation across binaries

= Con: speedup prediction can be unacceptable and minimal performance debug capability

Original Cross-Binary SimPoint (CBSP) solution*

» Find “mappable” routine and loop entry points where symbols and counts are identical across binaries
» Divide each binary execution into intervals of variable lengths bounded by these points
» Find phases and representative regions in binary,, and map them to the other binaries

Binary;:
. region, region, regiong region, regiong
: / / Mappable points
_ =% SRR SEs : / %heonli:gacﬂ;cur
Binaryp: P ;cross binaries

by construction

» Pro: regions are same in number and semantic representation, improving speedup and debugging
= Con: requires symbol information and limited variations in binaries
= Con: clustering accounts for variations over binary, execution only

= Con: simulation regions can be unfeasibly long due to strict mapping rules
*Perelman, Lau, Patil, Hamerly, Calder, Jaleel; ISPASS-07

New Cross-Binary SimPoints solution

» Find all possible “mappable” routine and loop entry points across binaries via graph-matching
» Divide each binary execution into intervals of (less) variable lengths bounded by these points
» Find phases and representative regions in unified profile across all binaries

Binary;:
region, region, region, region, regiong
Resolve
variations in
Binary,: mappable points

via sequence-
alignment

» Pro: relaxes requirement for symbols and allows more divergent binaries
» Pro: clustering accounts for variations across the execution of all binaries
» Pro: alleviates region-length issue

» Enabled by applying new graph-matching and sequence-alignment algorithms... m

Graph-matching

Dynamic Control-Flow Graph (DCFG) is created from execution of each binary
= Applying graph-matching to entire DCFG was found to be ineffective

= So, DCFG for each binary is decomposed hierarchically
= One top-level call graph: each routine is a node; calls are edges
= One sub-graph for each routine: each loop is a node; dominance (including nesting) defines edges
= Graph-matching is applied to top-level call graph and then to each loop graph in matching routines

= Algorithm matches nodes, minimizing differences in graph topology and node meta-data
Meta-data difference factors between any two nodes

= Edit distance between symbol names, if available

= Symmetric difference between sets of line numbers, if available

= Difference in execution counts (calls for routines, iterations for loops)

= Difference between in-degrees and out-degrees

M

Loop-matching example from 410.bwaves

3 nested loops
from binary A
compiled with
SSEA4.2
instruction set
(128-bit SIMD)

[terations:

* Quter: 400
* Middle: 13,200
* |nner: 264,000
» Epilog: 59,400

3 nested loops
from binary B
compiled with

AV X2 instruction
set (256-bit SIMD)

lterations:

* Quter: 400

* Middle: 13,200
* Prolog: 19,800
* |nner: 132,000
» Epilog: 46,200

Sequence alignment

Mappable
points
ya
399 999 a9 99) a 5599) dgdddd 3Kkkhim

ST e dE s

\ ~ \\ \\
N\ ~
N S SS

(BRI

\
\

N Sa
N N
. N

TTTTE <] AR 5] DR 4
Desired in:(afwal length

M

DB

instructions
)

Quality of independent SimPoint vs. new CBSP
= AVX2-to-MICAVX512 speedup on CPU2006 with Intel compiler

B |ndependent Simpoint

E New CBSP
14%

12%
10%
8%

6%

4%

| ||| | ‘ | |

0 _III II II I I_I] P I m b= I_ m_ @ Ha II I. II.
Q

D QO A SN
& & &R e“ _\(b & -
0 QO "J ,10 G,Q‘Q

Relative absolute error (lower is better)

X

Interval-length of original CBSP vs. new CBSP

= AVX2-to-MICAVX512 speedup on CPU2006 with Intel compiler

M Original CBSP

— @ New CBSP

| 8oom

=

(]

o]

o | 700m

()

=

= | s0om

L N

3 desired interval

© 500M length = 30M

g instructions

Q| a00m

i)

L

< | 300Mm

£

(@]

&

= | 200m

T

2

£ | 100m

5] - - - - - - - - - - _ - - - - - - - - - - i - - - - - - .

> o “MT-RTOmm IIII'II'II'Il'lIll'II'II'II’Il‘“IIII'II'II'II o~ anBor -afr-aer-af -wr- B

F—

o S T P N T TR S S S S SR > o D A + D> 0 &

> I § N & ¢ @ & & & & & R & & & & xS R

< & 4@4 ~<,>’\>Q r.}?'o ,}& o 2 © % <§\ 6°<° &M 6‘@ ® c;\‘g) A o’b@ o“’}g & o é\é\ & ~é‘(\+ & N 39& 0“’&
& 4 & P S @ P & &R TR RO
& NS Q I

Summary of new Cross-Binary SimPoint method

Benefits compared to independent SimPoint

= | ower speedup-estimation error

» Paired equal-work regions and graph-matching data can be used for performance debug
Benefits compared to original CBSP work

= Graph-matching enables finding more mappable points: without symbols, between
routines and loops with different call and iteration counts, etc.

= Alleviates simulation-length issue

M

To follow up

For more information on Pin and PinPlay

= Visit http://pintool.org/

= Visit http://pinplay.org/

= Attend PinPlay tutorial at PLDI in Portland, OR, June 14, 2015
= We plan to cover DCFG generation in this tutorial

For slides, questions, suggestions, information on availability of software

= Email chuck.yount@intel.com

= Email harish.patil@intel.com

M

http://pintool.org/
http://pinplay.org/
mailto:chuck.yount@intel.com
mailto:Harish.patil@intel.com

Backup

Problem statement

Efficiently and effectively compare the pre-Si performance of n binaries (run with
the same inputs) compiled differently from the same source code

= Conceptual flow:

Simulator,

Compiler,

Simulator,,

Compiler,

= Typical pre-Si limitation: cannot simulate entire run due to low simulation speed

» Need to find representative samples of the execution to simulate

Straight-forward SimPoint implementation

Run popular SimPoint simulation-region selection tool on each binary separately

Profile, Sim Regions,

Simulator,

SimPoint Perf Est,

Weights,,

SimPoint Perf Est,

Simulator,,

Profile,
Sim Regions,

Original Cross-Binary SimPoint* implementation

Profile, _ _ Simulator,
Sim Regions;

Routines Profiler SimPoint v Perf Est,

& loops;

Routines

& loops, Region Weights,,

mapper

Sim Regions, Simulator,

*CBSP: Perelman, Lau, Patil, Hamerly, Calder, Jaleel; ISPASS-07

New Cross-Binary SimPoint implementation

Simulator,

Sim Regions;
Edge trace; Perf Est,

Perf Est,
Edge trace, Weights,,

_ Logger
Binary, Sim Regions, Simulator,

*DCFG: Dynamic Control-Flow Graph (CFG + execution counts) @

Graph-Matching concept

Technigue used in computer vision and other fields

Color=black
Object=corner

Color=white
Object=oval

= Minimize meta-data differences between matched nodes (with weight a)
= Minimize topological differences between matched edges (with weight 1-a)

H

Sequence-alignment

Divide the execution trace of each binary into intervals

= Use the graph-matching data to divide intervals so that each matching set of intervals across
the binaries represents [approximately] the same work

= Create the same number of intervals in each of the n binaries

» Target the length (number of instructions executed) of each interval to be near a target set by
the user

= Qutput a frequency-vector file for SimPoint containing routine and loop counts in each interval
across all binaries

Heuristics required to handle differences in execution due to
= Different compiler optimizations: loop unrolling, loop reordering, in-lining, etc.
= Different instruction-set architectures, libraries, etc.

= Different SIMD vector widths, masking vs. conditional code, etc.

M

ldeal sequence-alignment

Timeline of Mappable
Binary O points

@))))))@@%))))@@ﬁ@@i@%@)))@@@@@%)))))\@é@ééé))ﬁﬁﬁﬁéﬁéi@é@eﬁﬁ

1 E ,' ,' ,’ ,’ ,’ \ Boundaries
Bin1 | ! !) K /! between

()23 ,))))3%%6)))3%&655)%%)))@%@%%)\))“&c)&&@&“bﬁéﬁéﬁﬁ%@%& ok
Bin. 2 1 \\\ \\ \‘ \\ \\\ \\\\

\ ~
\ \ N S

\(}))))))@%%))))@ﬁé@@bﬁé&)))@@ﬁ@&&))))))5&&&&&))6355@@3&@@@@5&
Y
Desired slice length

H

instructions
>

Experimental methodology

= Compile each CPU2006 benchmark with Intel® compiler at “O3” optimization

One binary using “-xCORE-AVX2” (256-bit vectors)
One binary using “-xMIC-AVX512” (512-bit vectors, masking, more new features)

= Determine actual AVX512/AVX2 speedup for each “ref” benchmark by executing each binary on the
CMP$im Pin tool and dividing the number of cycles from the AVX512 run by that of the AVX2 run

= Determine quality of new CBSP technique

Create IDCFG, edge-trace and whole-program logs for each benchmark using a PinPlay-enabled
Pin too

Apply graph-matching and sequence alignment on each using target length of 30M instructions
Run SimPoint tool on profile and run CMP$im on each SimPoint-selected region

Calculate estimated AVX512/AVX2 speedup using simulation regions and weights

Calculate relative absolute error (RAE) between actual and estimated speedup

» Determine RAE of independent SimPoint using similar calculations for quality comparison

= Create simulation regions using original CBSP technique for interval-length comparison

H

