
Graph-Matching-Based Simulation-Region

Selection for Multiple Binaries

Charles Yount and Harish Patil, Intel Corporation

Mohammad S. Islam, Univ. of Texas, San Antonio

Aditya Srikanth, Univ. of Texas, Austin

ISPASS-2015

2015 IEEE International Symposium on Performance Analysis of Systems and Software

March 29-31, 2015

Hilton At Penn's Landing, Philadelphia, PA

2

Motivation and problem statement

Evaluate pre-Si performance differences between n binaries compiled from the same source

Application examples

 Compare compilers and/or compiler optimizations

 Compare impact of different macro architectures and/or instruction set extensions

Requirements

 Find a set of representative simulation regions from each binary such that

 Resulting speedup estimates are accurate

 All regions are feasible for simulation

 Regions are matched across binaries, representing the same semantic work in each

 Tolerate significant differences between binaries due to different optimizations, instruction sets, etc.

 Do not require debug symbols or modification of source code

3

Independent-SimPoint approach

 Divide each binary execution into intervals of equal lengths

 Find phases and representative regions using k-means clustering independently for each binary

 Pro: all simulation regions are near desired length

 Con: regions differ both in number and semantic representation across binaries

 Con: speedup prediction can be unacceptable and minimal performance debug capability

Binary1:

region1 region2 region3 region4
region5

Binaryn:

region1 region2 region3 region4

•

•

•

4

Original Cross-Binary SimPoint (CBSP) solution*
 Find “mappable” routine and loop entry points where symbols and counts are identical across binaries

 Divide each binary execution into intervals of variable lengths bounded by these points

 Find phases and representative regions in binary1, and map them to the other binaries

 Pro: regions are same in number and semantic representation, improving speedup and debugging

 Con: requires symbol information and limited variations in binaries

 Con: clustering accounts for variations over binary1 execution only

 Con: simulation regions can be unfeasibly long due to strict mapping rules

Binary1:

region1 region2 region3 region4 region5

Binaryn:

•

•

• Mappable points

should occur

identically

across binaries

by construction

*Perelman, Lau, Patil, Hamerly, Calder, Jaleel; ISPASS-07

5

New Cross-Binary SimPoints solution

 Pro: relaxes requirement for symbols and allows more divergent binaries

 Pro: clustering accounts for variations across the execution of all binaries

 Pro: alleviates region-length issue

 Enabled by applying new graph-matching and sequence-alignment algorithms…

Binary1:

Binaryn:

•

•

•

region1 region2 region3 region4 region5

 Find all possible “mappable” routine and loop entry points across binaries via graph-matching

 Divide each binary execution into intervals of (less) variable lengths bounded by these points

 Find phases and representative regions in unified profile across all binaries

Resolve

variations in

mappable points

via sequence-

alignment

6

Graph-matching
Dynamic Control-Flow Graph (DCFG) is created from execution of each binary

 Applying graph-matching to entire DCFG was found to be ineffective

 So, DCFG for each binary is decomposed hierarchically

 One top-level call graph: each routine is a node; calls are edges

 One sub-graph for each routine: each loop is a node; dominance (including nesting) defines edges

 Graph-matching is applied to top-level call graph and then to each loop graph in matching routines

 Algorithm matches nodes, minimizing differences in graph topology and node meta-data

Meta-data difference factors between any two nodes

 Edit distance between symbol names, if available

 Symmetric difference between sets of line numbers, if available

 Difference in execution counts (calls for routines, iterations for loops)

 Difference between in-degrees and out-degrees

Loop-matching example from 410.bwaves

7

3 nested loops

from binary A

compiled with

SSE4.2

instruction set

(128-bit SIMD)

Iterations:

• Outer: 400

• Middle: 13,200

• Inner: 264,000

• Epilog: 59,400

3 nested loops

from binary B

compiled with

AVX2 instruction

set (256-bit SIMD)

Iterations:

• Outer: 400

• Middle: 13,200

• Prolog: 19,800

• Inner: 132,000

• Epilog: 46,200

Sequence alignment

8

abb ccc aibc ff k ka bbbcc dgddee jkkkhlm

 bbbcc caa cccd fgaabcekkkkaa ccdd deeffffghijk m

abbb ci abc c dffgh ib ekkhka bcddd hlm

Desired interval length

instructions

Mappable
points

9

Quality of independent SimPoint vs. new CBSP
 AVX2-to-MICAVX512 speedup on CPU2006 with Intel compiler

R
e
la

ti
v
e
 a

b
s
o
lu

te
 e

rr
o
r

(l
o
w

e
r

is
 b

e
tt
e
r)

Independent Simpoint

New CBSP

10

Interval-length of original CBSP vs. new CBSP
A

v
e
ra

g
e
 i
n
te

rv
a
l
le

n
g
th

 (
c
lo

s
e
r

to
 d

o
tt
e
d
 l
in

e
 i
s
 b

e
tt
e
r)

Original CBSP

New CBSP

 AVX2-to-MICAVX512 speedup on CPU2006 with Intel compiler

11

Summary of new Cross-Binary SimPoint method

Benefits compared to independent SimPoint

 Lower speedup-estimation error

 Paired equal-work regions and graph-matching data can be used for performance debug

Benefits compared to original CBSP work

 Graph-matching enables finding more mappable points: without symbols, between

routines and loops with different call and iteration counts, etc.

 Alleviates simulation-length issue

12

To follow up

For more information on Pin and PinPlay

 Visit http://pintool.org/

 Visit http://pinplay.org/

 Attend PinPlay tutorial at PLDI in Portland, OR, June 14, 2015

 We plan to cover DCFG generation in this tutorial

For slides, questions, suggestions, information on availability of software

 Email chuck.yount@intel.com

 Email harish.patil@intel.com

http://pintool.org/
http://pinplay.org/
mailto:chuck.yount@intel.com
mailto:Harish.patil@intel.com

Backup

15

Problem statement

Efficiently and effectively compare the pre-Si performance of n binaries (run with

the same inputs) compiled differently from the same source code

 Conceptual flow:

Source

code

Compiler1 Binary1

Inputs

Simulator1

Speedup

Compilern Binaryn
Simulatorn

•

•

•

•

•

•

•

•

•

 Typical pre-Si limitation: cannot simulate entire run due to low simulation speed

 Need to find representative samples of the execution to simulate

16

Straight-forward SimPoint implementation

Run popular SimPoint simulation-region selection tool on each binary separately

Binary1

Inputs

Simulator1Logger SimPoint

Profile1

Sim Regions0Sim Regions0Sim Regions1

Weights1

Perf Est1

Speedup

Binaryn

•

•

•

•

•

•

Simulatorn
Logger SimPoint

Profilen Sim Regions0Sim Regions0Sim Regionsn

Weightsn

Perf Estn

•

•

•

17

Original Cross-Binary SimPoint* implementation

Speedup

Binary1

Inputs

Binaryn

Logger

Routines

& loops1

Routines

& loopsn

Mappable

points

Logger

∩

Simulator1

Profiler SimPoint

Profile1 Sim Regions0Sim Regions0Sim Regions1

Weights1

Perf Est1

Simulatorn

Sim Regions0Sim Regions0Sim Regionsn

Weightsn

Perf Estn
Region

mapper

*CBSP: Perelman, Lau, Patil, Hamerly, Calder, Jaleel; ISPASS-07

18

New Cross-Binary SimPoint implementation

Speedup

Binary1

Inputs

Binaryn

Logger

DCFG1*

DCFGn

Logger

*DCFG: Dynamic Control-Flow Graph (CFG + execution counts)

Mappable

points
Graph

matcher

Edge trace1

Edge tracen

Sequence

aligner

Unified

profile

Simulator1

SimPoint +

weight calc

Sim Regions0Sim Regions0Sim Regions1

Weights1

Perf Est1

Simulatorn

Sim Regions0Sim Regions0Sim Regionsn

Weightsn

Perf Estn

19

Graph-Matching concept

Technique used in computer vision and other fields

 Minimize meta-data differences between matched nodes (with weight α)

 Minimize topological differences between matched edges (with weight 1-α)

Color=white

Object=oval

Color=black

Object=corner

20

Sequence-alignment

Divide the execution trace of each binary into intervals

 Use the graph-matching data to divide intervals so that each matching set of intervals across
the binaries represents [approximately] the same work

 Create the same number of intervals in each of the n binaries

 Target the length (number of instructions executed) of each interval to be near a target set by
the user

 Output a frequency-vector file for SimPoint containing routine and loop counts in each interval
across all binaries

Heuristics required to handle differences in execution due to

 Different compiler optimizations: loop unrolling, loop reordering, in-lining, etc.

 Different instruction-set architectures, libraries, etc.

 Different SIMD vector widths, masking vs. conditional code, etc.

Ideal sequence-alignment

21

abbb ccc daabccc dffghj iaabcekkk kaabbb bccddd dddeefff fghi jkkk klm

abbbcccdaabcccdffghjiaabcekkkkaabbbbccddddddeeffffghijkkkklm

abbbcccdaabcccdffghjiaabcekkkkaabbbbccddddddeeffffghijkkkklm

Desired slice length
instructions

Timeline of
Binary 0

Bin 1

Bin. 2

Mappable
points

Boundaries
between
slices of equal
work

22

Experimental methodology
 Compile each CPU2006 benchmark with Intel® compiler at “O3” optimization

 One binary using “-xCORE-AVX2” (256-bit vectors)

 One binary using “-xMIC-AVX512” (512-bit vectors, masking, more new features)

 Determine actual AVX512/AVX2 speedup for each “ref” benchmark by executing each binary on the
CMP$im Pin tool and dividing the number of cycles from the AVX512 run by that of the AVX2 run

 Determine quality of new CBSP technique

 Create DCFG, edge-trace and whole-program logs for each benchmark using a PinPlay-enabled
Pin tool

 Apply graph-matching and sequence alignment on each using target length of 30M instructions

 Run SimPoint tool on profile and run CMP$im on each SimPoint-selected region

 Calculate estimated AVX512/AVX2 speedup using simulation regions and weights

 Calculate relative absolute error (RAE) between actual and estimated speedup

 Determine RAE of independent SimPoint using similar calculations for quality comparison

 Create simulation regions using original CBSP technique for interval-length comparison

